首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   240篇
  免费   17篇
  国内免费   1篇
测绘学   1篇
大气科学   15篇
地球物理   49篇
地质学   111篇
海洋学   10篇
天文学   61篇
自然地理   11篇
  2023年   2篇
  2021年   2篇
  2020年   7篇
  2019年   4篇
  2018年   13篇
  2017年   8篇
  2016年   8篇
  2015年   10篇
  2014年   8篇
  2013年   8篇
  2012年   6篇
  2011年   6篇
  2010年   9篇
  2009年   7篇
  2008年   9篇
  2007年   9篇
  2006年   6篇
  2005年   8篇
  2004年   8篇
  2003年   11篇
  2002年   4篇
  2001年   4篇
  2000年   9篇
  1999年   5篇
  1998年   7篇
  1997年   9篇
  1996年   6篇
  1995年   8篇
  1994年   3篇
  1993年   4篇
  1992年   2篇
  1991年   4篇
  1989年   2篇
  1988年   6篇
  1987年   3篇
  1986年   3篇
  1984年   7篇
  1983年   2篇
  1978年   2篇
  1977年   2篇
  1976年   1篇
  1974年   3篇
  1973年   3篇
  1971年   1篇
  1963年   1篇
  1962年   1篇
  1960年   2篇
  1957年   1篇
  1955年   1篇
  1949年   1篇
排序方式: 共有258条查询结果,搜索用时 229 毫秒
11.
Digital rock physics (DRP) is a rapidly evolving technology targeting fast turnaround times for repeatable core analysis and multi-physics simulation of rock properties. We develop and validate a rapid and scalable distributed-parallel single-phase pore-scale flow simulator for permeability estimation on real 3D pore-scale micro-CT images using a novel variant of the lattice Boltzmann method (LBM). The LBM code implementation is designed to take maximum advantage of distributed computing on multiple general-purpose graphics processing units (GPGPUs). We describe and extensively test the distributed parallel implementation of an innovative LBM algorithm for simulating flow in pore-scale media based on the multiple-relaxation-time (MRT) model that utilizes a precise treatment of body force. While the individual components of the resulting simulator can be separately found in various references, our novel contributions are (1) the integration of all of the mathematical and high-performance computing components together with a highly optimized code implementation and (2) the delivery of quantitative results with the simulator in terms of robustness, accuracy, and computational efficiency for a variety of flow geometries including various types of real rock images. We report on extensive validations of the simulator in terms of accuracy and provide near-ideal distributed parallel scalability results on large pore-scale image volumes that were largely computationally inaccessible prior to our implementation. We validate the accuracy of the MRT-LBM simulator on model geometries with analytical solutions. Permeability estimation results are then provided on large 3D binary microstructures including a sphere pack and rocks from various sandstone and carbonate formations. We quantify the scalability behavior of the distributed parallel implementation of MRT-LBM as a function of model type/size and the number of utilized GPGPUs for a panoply of permeability estimation problems.  相似文献   
12.
International Journal of Earth Sciences - In this study, we report U–Pb Laser Ablation ICP-MS zircon and ID-TIMS monazite ages for peraluminous granitoid plutons...  相似文献   
13.
Chichi-jima, Bonin Islands, consists of dominant Eocene submarine volcanic rocks, comprising boninites, andesites and dacites, and subordinate sedimentary rocks. The dacites occur frequently in breccias and pillows overlying a boninite pillow lava sequence. The boninite pillows are intruded by a multiple dike, in which a core boninite is chilled against outer dacites. A density-stratified chamber may have been capped by a dacite magma. The dacites, which can be divided into quartz dacite and quartz-free dacite, are differentiates from the boninite-forming magmas, because they vary continuously in composition from boninites through andesites. The quartz dacites, corresponding to rhyolite in SiO2, are lower in Na2O and K2O than most orogenic dacites. Some of the dacites are characterized by ferropigeonite (Wo7–16En23–39Fs68-54) phenocrysts and are clearly ferrodacite, producing variable amounts of Fs-rich normative pyroxenes. The relation of SiO2 to total FeO/MgO ratio indicates that many of both types of dacites, with glasses in boninites, are enriched in total FeO despite the strong calc-alkalic affinity of boninites. The crystallization temperature of ferropigeonite with Mg value 30 in a quartz dacite is estimated to be 900° C and that in a quartz-free dacite to be 1050° C, which are unusually high for differentiated silicic rocks. Some Chichi-jima rocks are fresh, having a low ratio of Fe2O3 to FeO. On the basis of the experimental study of magmatic ferric-ferrous equilibria at 1 bar, the oxygen fugacities are calculated as 10–13.6 bars at 900° C for a ferropigeonite quartz dacite and 10–8.9 bars at 1200° C for a boninite with the lowest Fe3+/Fe2+. Both values lie below the quartz-fayalite-magnetite buffer line. The boninite series volcanic rocks have preserved low oxygen fugacities as well as high temperatures until the latest differentiation stage. The ferropigeonite phenocrysts have crystallized from the dacite magmas under the conditions of moderately high temperatures, very low oxygen fugacities and high total FeO and SiO2 concentrations.  相似文献   
14.
The lower Oligocene evaporite sequence of the Mulhouse Basin (France) contains organic matter-rich marl deposits. These marls display an overall cyclic variation of sedimentation rate, organic carbon content, hydrogen index and selected molecular parameters over a 30 m thick stratigraphic interval. The integration of all sedimentological and geochemical parameters has allowed the reconstruction and characterization of the paleoenvironment of deposition. The marls were deposited in a perennial lake that was at times connected to the sea. Two organic facies end members could be assigned to a lake stage with a marine connection and a lake stage that received dominantly continental water input. The overall stratigraphic variation in the organic matter content is interpreted to reflect the adaptation of the Oligocene flora to the changing paleoclimate and environmental conditions.  相似文献   
15.
The igneous rocks of the Pongola Supergroup (PS) and Usushwana Intrusive Suite (UIS) represent a case of late Archaean continental magmatism in the southeastern part of the Kaapvaal craton of South Africa and Swaziland.

U-Pb dating on zircons from felsic volcanic rocks of the PS yields a concordia intercept age of 2940 ± 22Ma that is consistent with a Sm-Nd whole rock age of 2934 ± 114Ma determined on the PS basalt-rhyolite suite. The initial εNd of−2.6 ± 0.9 is the lowest value so far reported for Archaean mantle-derived rocks. Rb-Sr whole rock dating of the PS yields a younger isochron age of 2883 ± 69Ma, which is not significantly different form the accepted U-Pb zircon age.

An internal (cpx-opx-plag-whole rock) isochron for a pyroxenite from the younger UIS yields an age of 2871 ± 30 Ma and initial 143Nd/144Nd that lies off the CHUR growth curve by εNd −2.9 ± 0.2. However, Sm-Nd whole-rock data for the UIS yield an excessively high age of 3.1 Ga that conflicts with firm geological evidence showing the UIS to be intrusive into the PS.

The negative deviations of initialεNd from the chondritic Nd evolution curve suggest significant contamination of the PS and UIS melts by older continental crust. A mixing process with continental crust after magma segregation is supported by a high initial 87Sr/86Sr ratio of0.703024 ± 24 for a clinopyroxene sample from a UIS pyroxenite, compared with an expected value of 0.701 for the 2.9 Ga mantle. We therefore interpret the linear array of data points for the UIS gabbros as a mixing line between 2.87 Ga old magma and older continental crust.

Parallel LREE-enriched REE patterns, negative Nb-Ti anomalies, a distinctive and uniform ratio of Ti/Zr 46 and a narrow span of initial Nd indicate a common source for both the PS and UIS suites which is different from primitive mantle.  相似文献   

16.
Among long-lived radioactive parent-daughter element pairs, the ratio Lu/Hf is strongly fractionated relative to constant Sm/Nd in the Earth's sedimentary system. This is caused by high resistance to chemical weathering of the mineral zircon (Zr,Hf)SiO4. Zircon-bearing sandy sediments on and near continents have very low Lu/Hf, while deep-sea clays have up to three times the chondritic Lu/Hf ratio. Turbidity currents mechanically carry the low-Lu/Hf sandy material onto the ocean floor. The results are important for the crust-to-mantle recycling discussion, where most recycled materials would be subducted oceanic sediments. Such sediment should be capable of explaining the HfNd mantle isotopic variation by mixing with peridotite, but in fact any average pelagic sediment has Nd/Hf and Lu/Hf too high to allow mixing curves to pass through the Hf/Nd isotopic array. The array could only be reproduced by subduction of turbidite sandstone with pelagic sediment in the approximate ratio 1.2 to 1, and by maintaining a good mixture between the two components. At least today, turbidites are available for subduction only at locations quite different and distant from those where pelagic sediments may be recycled; furthermore, mantle isotopic variation shows that the mantle often cannot mix itself well enough to homogenize these widely-separated sedimentary components to the degree required. The Lu/Hf fractionations place a severe restriction on the ability of recycled sediments to explain mantle isotopic patterns.  相似文献   
17.
In this paper we present accelerator radiocarbon measurements on hand picked benthic and planktonic foraminifera separated from two deep sea cores raised from the South China Sea. From the benthic-planktonic age differences we are able to place limits on the extent to which the ventilation rate of the deep Pacific Ocean has changed over the last 12000 years. While much work remains to be done before any definitive answers for the global oceans can be given, these results on cores with sedimentation rates suitably high to avoid major corrections for bioturbation effects suggest that the ventilation rate of the deep Pacific Ocean has remained nearly the same throughout Holocene time. Further, there is no suggestion that the rate was slower during the period of major glacial retreat. These results confirm that the changes in atmospheric14C/C ratio over the last 10000 years owe their origin to radiocarbon production rate changes.  相似文献   
18.
The Ivrea zone represents a tilted cross section through deep continental crust. Sm-Nd isotopic data for peridotites from Baldissero and Balmuccia and for a suite of gabbros from the mafic formation adjacent to the Balmuccia peridotite provide evidence for an event of partial melting 607±19 Ma ago in an extended mantle source with 607 Nd =+0.4±0.3. The peridotites are interpreted as the corresponding melt residue, the lower part of the mafic formation as the complementary melts which underwent further differentiation immediately after extraction. The Finero body represents a complex with layers of phlogopite peridotite, hornblende peridotite, and amphibole-rich gabbro. The isotopic signatures fall into two groups: (1) highly radiogenic Nd and low-radiogenic Sr characterize the phlogopite-free, amphibole-rich rocks, whereas (2) low-radiogenic Nd and highly radiogenic Sr is found in ultramafics affected by phlogopite metasomatism. Phlogopite metasomatism in the Ivrea zone is dated by a Rb-Sr whole rock isochron yielding 293±13 Ma. It was fed by K-rich fluids which were probably derived from metasediments. The high initial 293 Nd value of about +7.5 for phlogopite-free samples indicates a high time-integrated Sm/Nd ratio in the Finero protolith 293 Ma ago. Sm-Nd analyses of metapelites from the paragneiss series yield Proterozoic crustal residence ages of 1.2 to 1.8 Ga. Internal Sm-Nd isochrons for three garnetiferous rocks show that closure of garnet at temperatures around 600° C or even lower occurred about 250 Ma ago.  相似文献   
19.
Kohala revisited     
We present new isotopic data for Sr and Nd in basalts and alkalic volcanics from Kohala volcano, Hawaii, which had previously been described by Feigenson et al. (1983). These data complement our own isotopic data presented in that paper and those given in the companion paper by Lanphere and Frey (1986). We show that in spite of appearances to the contrary, there is no significant analytical bias in our previously published analyses. Accidental sampling bias and one erroneous value prevented us from recognizing the isotopic heterogeneity in our previously published data. The new data both confirm the Sr-isotopic distinction between Pololu and Hawi volcanics discovered by Lanphere and Frey and narrow the gap between them significantly. The two data sets agree for the Hawi samples, but the mean 87Sr/86Sr=0.703651±13 for our Pololu basalts is significantly lower than the mean 87Sr/86Sr= 0.703748±18 found by Lanphere and Frey. The Ndisotopic ratios are also heterogeneous, but they overlap for the two formations. We agree with the assessment of Lanphere and Frey that some of our samples originally classified as belonging to the Hawi Formation are actually derived from the uppermost Pololu Formation, but with some stratigraphic ambiguities remaining.We believe that our previous results of inverse modelling are valid for the tholeiitic and moderately alkalic Pololu Formation despite the isotopic heterogeneity because this heterogeneity does not correlate with the trace element chemistry of the Pololu samples.The severe depletion of Sc, which correlates with decreasing CaO/Al2O3 ratios and increasing Yb concentrations, confirms the importance of clinopyroxene fractionation in the evolved lavas of the Hawi Formation. In addition, apatite precipitation did fractionate the P/Ce ratios in the more evolved Hawi lavas, but its effect on the REE abundances is still uncertain and may not be significant.The MgO — P2O5 plot of Lanphere and Frey does not provide compelling evidence against a simple genetic relationship between Pololu and Hawi lavas. The internal consistency of the (fractionation corrected) trace element ratios such as Ba/Ce indicates that Ba is depleted in both the Hawi and the Pololu sources and that these sources do have similar chemistry.Finally, we show that contrary to the conclusions of Lanphere and Frey the REE patterns of Kohala volcanics can be generated from sources with only slightly negatively sloping REE patterns without involvement of garnet, as was indicated by the formal inversion analysis. Models which include garnet yield more highly anomalous source abundance patterns and calculated bulk-source partition coefficients which are inconsistent with the presence of garnet. The persistence of residual garnet is also inconsistent with the absence of significant heavy-REE fractionation among the Pololu basalts.  相似文献   
20.
himu, em i andem ii are three of the main geochemical mantle components that give rise to oceanic island basalts [1]. They represent the end members that produce the extreme isotopic compositions measured on intraplate volcanics. In French Polynesia, all three mantle components are represented in volcanic rocks. The characteristichimu signature is found in Tubuai, Mangaia and Rurutu,em i is present in the source of Rarotonga and Pitcairn volcanics andem ii dominates the composition of most Society Islands. Intermediate values between the three end members are found on most islands.We suggest that the three components are not independent but are physically related in the mantle. Thehimu component is thought to be recycled oceanic crust that lost part of its Pb through hydrothermal processes prior to and during subduction.em i andem ii are believed to acquire their isotopic and trace element characteristics through entrainment of sediments that were subducted together with the oceanic crust.The trace element pattern and the isotopic composition ofhimu lavas can be quantitatively modelled using a mixture of 25% old recycledmorb crust and 75% mantle peridotite. The extreme Pb composition is modelled assuming that Pb was lost from oceanic crust when hydrothermal alteration at the ridge leached Pb from the basalt to redeposit it as sulphides on top of and throughout the crust, followed by preferential dissolution of sulphides during dehydration in the subduction zone. These processes led to a drastic increase of theU/Pb ratio of the subducted material which evolved over 2 Ga to very radiogenic Pb isotopic compositions. Pb isotopic compositions similar to those ofem i andem ii are modelled assuming that sediments with average crustal Pb isotopic compositions were subducted and recycled into the mantle together with the underlyingmorb oceanic crust. Pelagic sediments (μ 5 andκ 6) account for the Pb isotopic composition ofem i whereas terrigenous sediments (μ 10 andκ 4.5) evolve towards theem ii end member. A few percent of sediment in the recycled crust-sediment mixture will destroy the characteristic Pb isotopic signature of thehimu component. This, together with the low probability of isolating oceanic crust in the mantle for 2 Ga, explains why the extremehimu composition, as seen on Tubuai and St Helena, is sampled so rarely by oceanic volcanism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号